A semi-parametric estimation of mean functionals with non-ignorable missing data
نویسندگان
چکیده
Parameter estimation with non-ignorable missing data is a challenging problem in statistics. The fully parametric approach for joint modeling of the response model and the population model can produce results that are quite sensitive to the failure of the assumed model. We propose a more robust modeling approach by considering the model for the nonresponding part as an exponential tilting of the model for the responding part. The exponential tilting model can be justified under the assumption that the response probability can be expressed as a semi-parametric logistic regression model. In this paper, based on the exponential tilting model, we propose a semi-parametric estimation method of mean functionals with non-ignorable missing data. A semiparametric logistic regression model is assumed for the response probability and a non-parametric regression approach for missing data discussed in Cheng (1994) is used in the estimator. By adopting nonparametric components for the model, the estimation method can be made robust. Variance estimation is also discussed and results from a simulation study are presented. The proposed method is applied to real income data from the Korean Labor and Income Panel Survey.
منابع مشابه
A semi-parametric approach to fractional imputation for nonignorable missing data
Parameter estimation with nonignorable missing data is a challenging problem in statistics. Fully parametric approach for joint modeling of the response model and the population model can produce results that are very sensitive against the failure of the assumed model. We consider a more robust approach of modeling by describing the model for the nonresponding part as a exponential tilting of t...
متن کاملPseudo-likelihood Methods for the Analysis of Longitudinal Binary Data Subject to Nonignorable Non-monotone Missingness
For longitudinal binary data with non-monotone non-ignorable missing outcomes over time, a full likelihood approach is complicated algebraically, and maximum likelihood estimation can be computationally prohibitive with many times of follow-up. We propose pseudo-likelihoods to estimate the covariate effects on the marginal probabilities of the outcomes, in addition to the association parameters...
متن کاملParametric fractional imputation for mixed models with nonignorable missing data
Inference in the presence of non-ignorable missing data is a widely encountered and difficult problem in statistics. Imputation is often used to facilitate parameter estimation, which allows one to use the complete sample estimators on the imputed data set. We develop a parametric fractional imputation (PFI) method proposed by Kim (2011), which simplifies the computation associated with the EM ...
متن کاملAnalysis of non-ignorable missing and left-censored longitudinal data using a weighted random effects tobit model.
In a longitudinal study with response data collected during a hospital stay, observations may be missing because of the subject's discharge from the hospital prior to completion of the study or the death of the subject, resulting in non-ignorable missing data. In addition to non-ignorable missingness, there is left-censoring in the response measurements because of the inherent limit of detectio...
متن کاملSemiparametric approach for non-monotone missing covariates in a parametric regression model.
Missing covariate data often arise in biomedical studies, and analysis of such data that ignores subjects with incomplete information may lead to inefficient and possibly biased estimates. A great deal of attention has been paid to handling a single missing covariate or a monotone pattern of missing data when the missingness mechanism is missing at random. In this article, we propose a semipara...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010